Introduction to Smart Textiles // Matilda Linde Dellrud // 28th April 2013.


There are numerous different views  on  how  to  define Smart Textiles.  Some say that Smart Textiles are textiles that are able to sense changes in their environment and can act upon this in a predetermined way (Pu, et al, 2000) (Lam Po Tang and Stylios, 2005). Other choose to give a wider definition; saying that Smart Textiles are simply textiles that are able to sense changes in their environment. (Tao and Zhang, 2001a,b,c).

I have chosen the later definition as I find the previous one to exclude important technologies that could have a large future potential for footwear; this will be discussed later. Breathable, waterproof membrane fabrics, such as Gore-Tex, Carbon fibres or super strong bulletproof aramide fabrics  like  Kevlar  are  by  this  definition  not Smart Textiles, as their properties are static, and will therefore not be discussed in this work.

The different parameters than can be sensed by Smart Textiles are thermal, mechanical, chemical, electrical, magnetic, and optical. The response carried out by Active Smart and Very Smart textiles can be either direct visible or indirect. The direct visible responses include property changes,   such   as   change   in   colour,   or   size/location changes like shape, geometry and volume. Indirect responses may include property changes or energy exchanges  at  a  molecular  level,  magnetic  or  electrical level  that  may  not  be visible  to the  naked  eye,  but  are able  to  trigger  other  controlled  reactions  or  functions (Lam Po Tang, Stylios, 2005).

Tao and Zhang (2001a,b,c) concluded that Smart Textiles can  be  divided   into   three   subgroups;   Passive   Smart Textiles, Active Smart Textiles and Very Smart Textiles.   Fig (1).

Fig (1): Smart textiles
Fig (1): Smart textiles

Passive Smart Textiles are materials with a textile nature that can be included  in a textile  structure.  They  can be used a sensors  as they can detect and transform  signals into electric signals. Examples are:

ð Optic fibres

ð Conductive materials

ð Thermocouple

Active  smart  textiles  are  materials  that  can  sense  and react to environmental conditions or stimuli. This makes them  both  sensors  and  actuators.  Addington  and Schodek, (2005) have divided these materials into two classes.   The   first   class   contains   those   who   in  direct response to a stimulus undergo a change in one or more of their properties (fig. 2). The second class contains those that  transform  energy  reversibly  from  one  form  to  an output  energy  on  another  form  (fig.  3).  As  Addington and Schodek  (2005)  have  identified  the term  “material” can  be  slightly  misleading  as  many  of  the  materials  in this  class  are  made  up  of several  more  basic  materials.

Fig (2): Active Smart TYPE 1 materials
Fig (2): Active Smart TYPE 1 materials
Fig (3): Active Smart TYPE 2 materials
Fig (3): Active Smart TYPE 2 materials

Examples of Active Smart Materials are:


ð Chromatic Materials

ð Shape Memory Materials

ð Phase Change Materials

ð Hydrogels & Membranes


ð Luminescent Materials

ð Photovoltaics

ð Electric Polymer

Very Smart Textiles are units, which with the help of integrated devises and technologies, can sense, react and adapt themselves to environmental conditions or stimuli. Examples of such units are:

ð Space Suits

ð Thermo Regulating Clothing

ð Health Monitoring Apparel

Intelligent Wearables

Intelligent wearables are able to sense changes in the environment and act upon this in a predetermined way. These changes can be thermal, mechanical, chemical, electrical, magnetic and optical.

Intelligent Clothing can be divided into three categories: clothing assistant that store information in a memory and carry out complex calculations, clothing monitors that record the behaviour and the health of the wearer and regulative   clothing,   which  adjusts  certain  parameters, such as temperature or ventilation. (Concar, et al, 2000)

Five Functions can be distinguished in an intelligent suit: sensors, data processing, actuators, storage and communication; however all are not always present (Langenhove   and  Hertleer,  2004).  Data  processors  are only required when active processing is necessary, and today, there are no textile materials  able to perform this task  (Van  Langenhove),  therefore  this  will  not  be discussed in this project. By Storage, Langenhove and Hertleer,   (2004),  mean  to  store  data  or  energy.  Data cannot  be  stored  in  any  textile  devises  today.  Phase Change Materials and Shape Memory Materials could conceptually  store thermal energy, but the movement  is not fast enough to make a considerate amount of power (Stylios,  Discussion  of  technology,  Galashiels,  25  May, 2010).  Sensors,  actuators  and  communication  can  all besmart textiles and will be discussed later.

Examples  of  intelligent  wearables  are  Very  Smart Textiles, like the Georgia Tech Wearable Motherboard (GTWM),  which  provides  an  extremely  versatile framework  for the incorporation  of sensing,  monitoring and information  processing  devices.  It provides,  for the first time, a very systematic way of monitoring the vital signs of humans (Park et al,. 2002).


A sensor is a device that detects or responds to a physical or  chemical   stimulus.   (Addigton   and  Schodek,   2005) There  are numerous  different  kinds  of sensors  sensitive to different types of stimulus; light, motion, thermal, magnetic, gravity, humidity, touch, vibration, pressure, position, electrical field, sound, proximity, stretch and biological and chemical sensors.

Active  Smart  Materials  are  so  called  inherently responsive  materials  and  are  their  own  sensors. Chromatic materials are sensor by detecting a change in light, electricity field, stress and/or deformation, electron beam, humidity, chemicals or pressure. Shape Memory Material  by detecting  a thermal  change  or resistance  to an  electrical  current.  Phase  Change  Materials  by detecting a change in temperature.

Smart  Garments  that  do  not  deriver  their  “smartness” from  inherently  responsive  materials  require  added sensors to detect physical stimuli and process them into electronic   signals.   (Lam   Po   Tang   and   Stylios,   2005) Passive  Smart  Textiles,  as  in  Optical  Fibres  and Conductive materials, can be used as such, but also some of  the  Active  Smart  Textiles  like  Piezoelectric  polymer fibres for example, or chromatic colours which, among other,  can  detect  changes  is  pH  (Mohr  and  Wolfbeis, 1994; Coyle et al, 2008).


Fibre Optic Sensors (FOS) is made out of polymeric materials. The various physical parameters usually measured      with      fibre      optics      are      strain/stress, deformations,  pressure,  temperature,  or refractive  index (Cochrane et al., 2007).

Rothmaier  et al, (2008) have successfully  developed pressure sensitive textiles based on thermoplastic silicone fibres. When pressure at a certain area of the textile is applied to the fibres they change cross section reversibly, due to their elastomeric character, and a simultaneous change  in  transmitted  light  intensity  can  be  detected.  I see a potential use for this in gait monitoring.

Many papers discuss the use of optical fibres as sensors in   combination   with   chromatic   materials,   where   the optical fibre picks up a colour change, caused by the measured  stimuli.  Coyle  et  al,  (2008)  has  presented  a sensor for measuring sweat during exercise, using a pH sensitive  dye  incorporated  into  a  fabric  fluidic  system. This could  be very interesting  to use in footwear,  since the feet produce a lot of sweat. This could be used to give instant  feedback  to  the  wearer  of  health  conditions  as sweat  changes   PH  when  the  body  is  dehydrated   or before muscle fatigue.

The advantages of FOSs, are flexibility, stability, lightweightness, high temperature capacity and no heat production, insensitivity to electromagnetic radiation and have no susceptibility to electrical discharges. (Rothmaier et  al,  2008).    They  can  also  be  easily  embedded  in  a variety of composite materials without compromising the host structures,  and they provide an effective  means for monitoring physical parameters along a single fibre path (Cochrane et al., 2007).


Conductive  materials  are used  as flexible  sensors.  They can  take  many  different  forms,  such  as  fibres, incorporated into flexible skin-tight garments to measure joint  motion,  strain,  as  the  resistance   of  the  garment changes (Gibbs and Asada, 2004), polymer, yarns, fabrics, polymers,   inks,  coatings   and  stitching   or  embroidery (Lam Po Tang, Stylios, 2005), easily made on a computer- controlled  embroidery  machine  (Tao  and Zhang,  2001a; Post and Orth, 1997). The electro conductivity of these materials  varies  depending  on  stress,  temperature variation, UV radiation and humidity, which can be used as a measuring parameter’. (Cochrane et al., 2007)

Since conventional wires are very stable they are most frequently  used, however  conductive  polymers  (CP) are on the upswing and several research projects are taking place  (Stylios,  Discussion  of  technology,  Galashiels,  25 May, 2010). They are organic polymers that conduct electricity (Inzelt, 2008). Such compounds may be true metallic conductors or semiconductors. It is generally accepted that metals conduct electricity well and that organic compounds  are insulating, but this class of materials combines the properties of both. Conductive polymers have mechanical  properties, such as flexibility, toughness, malleability, elasticity, etc., and high electrical conductivities. (Naarmann, 2002).

CPs  can  be  made  into  composites   (CPC),  which,  for instance,  can be used to measure  strain (Cochrone  et al, 2006), pressure or sweat (Lam Po Tang and Stylios, 2005). Flexible  pressure  sensors  are  based  on  various mechanisms.   Quantum  tunnelling  composite  (QTC),  a CPC, has had a large hype recently, they are still at an experimental  stage, but with large future  potential. (Stylios,  Discussion  of  technology,  Galashiels,  25  May, 2010).

Due  to  the  properties  of  textile  structures;  being stretchable,  elastic,  highly  flexible  and lightweight,  they are constantly in movement and easily deformed, even under very low stresses. It is therefore important that the integrated  sensor  does  not  modify  their  general behaviour (Cochrone et al, 2007). Optical fibres are rather stiff compared to standard textile fibres (Rothmaier  et al, 2008),   where   as  Conductive   Material   sensors   can  be manufactured without losing the general characteristic behaviour of a textile. However this might not be of significant importance as footwear are made out of rather stiff materials in comparison to garments.


Thermocouples are sensors used to measure temperature, which can be integrated into textile structures. They primarily  measure  surfaces  exposed  to  a  fast  changing heat flux in the industry (Heichal, et al, 2004). Hikers however, and most people in general, are not exposed to such high temperature or fast temperature changes. They are therefore not useful for hiking footwear but perhaps applicable   with  the  footwear   of  firefighters,   they  are already present in firefighter suits.


Actuators  convert  energy  into motion,  releases substances,  makes  noise,  and  many  other  (Van Langenhove  and  Hertleer,  2004).  The  energy  can  come from mechanical, thermal, electrical, magnetic, radians or chemical changes. Active Smart Materials are actuators; Piezoelectric materials by passing an electric current through the material to create a force (Addigton and Schodek, 2005), Hydrogels by swelling in response to a change in the stimuli (Lam Po Tang, Stylios, 2005), Shape Memory   Materials   by   changing   molecular   state   and shape   in   response   to   a   stimuli   and   Phase   Change Materials   by   changing   phase   due   to   a   temperature change.

Chromatic materials

Chromic materials can change their colour according to external stimuli, as they are printed or/and dyed with chromic colours, this makes them both sensors and activators.  This  could  have  both  aesthetical  and functional purposes.

There  are several  different  types  of chromatic  materials that  all  respond  to  different  kinds  of  stimuli. Photochromic colours respond to light, thermochromic colours respond to temperature changes, eletcrochromic respond to electricity, mechanocromatic  respond to stress and/or deformation, ionochromic, to different pH, carsolchromic   to  an  electron  beam,  solvatechromic   to liquid, chemochromatic respond to chemicals and the external stimuli energy for piezorochromic is pressure change (Sudhakar, 2010).

‘In the medical field, garments that can detect and warn of the presence of infections, bacteria or viruses or any change in physiological functions of the wearer can assist in  support,  diagnosis  and  treatment  of  patients.  In  the fire-fighting sector, thermochromatic dyes have been engineered  to  change  the  protective  clothing  to  white under extreme temperatures in order to reflect the heat away from the body (Hibbert, 2001)’ (Lam Po Tam and Stylios, 2005).

If used together with Fibre Optics, chromatic colours can be used as sensors to trigger reactions in smart garments as in the Georgia Tech Wearable Mother Board or sweat sensors, as mentioned in section As optical fibres both transmit and absorbs light they can be used even in a  dark  environment  (R.,  Christie,  Discussion  on technology, Galashiels, 1 July, 2010) such as footwear.

Chromatic colours could be used, for aesthetic purposes, on its own or, as Kerri Wallace (2005) do, in combination with conductive fibres to change the coloured surface of sportswear using the correlation between heart rate and body  temperature   as  a  trigger  for  the  visual representation of the activity level.

For footwear chromatic colours could be used for both performance  and  visual  purposes.  I  would  like  to  use these  colours  to warn  the wearer  of the strength  of the sun as he/she climbs to higher altitudes and to create patterns  using  stimulus  from  the  surrounding   of  the hiker.

Phase Change Materials

Phase Change Materials (PCM) are latent heat-storage materials, which can be integrated into textiles structures, in numerous ways, as microcapsules.  Examples of PCMs are paraffin  waxes,  hydrated  salts, fatty acids  and eutectics  of organic  and  inorganic  compounds  (Farid  et al., 2004)

Most commonly  PCMs go from a liquid to a solid state, and back, at a predetermined  temperature,  but they can also go from liquid to gaseous state, solid to gaseous state and even solid-to-solid  state (Lam  Po Tang and Stylios, 2005). ‘When  the temperature  increases  and reaches  the melting point of the PCM, the melted PCM absorbs heat, inhibiting the flow of thermal energy through the fabric, and  maintaining   its  temperature   constant  (ying  et  al., 2004; Hartmann, 2004). When the external conditions and the PCM  cools  down  and  solidifies,  the reverse  occurs, and heat is released to keep the wearer warm’ (Lam Po Tang, Stylios, 2005).

PCMs are widely used within both apparel and footwear, wherefore I will not expand this technology in the project any further.

Shape Memory Materials

Shape Memory Materials (SMM) are able to regain their original  and  pre-programmed  shape,  after  being deformed, when exposed to a certain stimuli. The stimuli can be thermal, magnetic, mechanical or electrical. This occurs because the material changes its internal structure at, for instance, a certain temperature. (Lam Po Tang and Stylios, 2005) SMMs are most commonly alloys and polymers but they can also be, ceramics, gels and glasses. Except for it shape memory effect; some SMMs also have properties  such  as,  pseudoelasticity,  high  damping capacity and adaptive properties (Chan Vili, 2004).

1- Shape Memory Alloys

Shape   Memory   Alloys   (SMA)   are   a  special   class   of adoptive materials that can convert thermal energy into mechanical  motion  (Shakeri  and  Noori  et al; Chan  Vili, 2004). SMAs are usually Nickel-Titanium  (NiTi) Alloys or Cupper (Cu) based Alloys.

NiTi alloys can easily be fabricated into a variety of forms and  sizes,  which  makes  it  technically  possible  to  use them  as an  active  element  in various  composites.  They have successfully been fabricated into thin films, fibres, particles and porous bulks (Chan Vili, 2004). ‘The Shape Memory   treatments   for  NiTi  alloys  are  simple,   “The formed  product  is  placed  into  a  jig  and  heated  in  an electric   furnace.   The  heat-treated   alloy  is  allowed   to recover   the   memorise   shape   and   obtain   the   shape- memory property; the alloy is then known to be ‘trained’ or ‘thermally  treated’  with the prescribed  shape”  (Chan Vili,  2004).  SMAs  are  strong  enough  to  lift  the  body weight of a person as it changes state (Stylios, Discussion of technology, Galashiels, 3 June, 2010).

2-  Shape Memory Polymers

Shape Memory Polymers (SMP), which have higher extensibility,   superior   processability,   lower   weight,   a softer  handle   (Lam   Po  Tang  and  Stylios,   2005),  and different colour variations (Chan Vili, 2004), than SMAs, can  be  applied  to  a  textile  structure  as  solution, emolution,  film,  fibre,  foam  and  bulk.  (Hu  et al., 2009). Even  though  they  are  cheaper  than  SMAs  (Van Langenhove  and  Hertleer,  2004),  and  can  be controlled with  the  use  of  heating,  light  or  chemicals  (Chan  Vili, 2004), they are not used as frequently due to the fact that they cannot be loaded very heavily during the recovery process,   this   might   not   be   of   great   importance   to footwear  as  the  recovery  stage  would  most  probably occur  when  the  footwear  has  been  removed  from  the foot, and the SMP is therefore unloaded.

Shape memory fabrics with in-built shape memory fibres can be used to create self-adaptable textiles with self- regulated structures that can performer in response to changes in environmental temperature (Hu et al., 2009). They  can  be  used  as  temperature  and  moisture management (Russell, et al, 1999), examples of usage is; waterproofing, windproofing, breathability.

SMP can also be made into hollow fibres. The internal diameter  of  the  hollow  fibre  can  change  and  recover under thermal stimulation. This can be used to affect the physical properties of textile products, and be used for thermal  management  (Hu et al., 2009).   These fibres can also adapt to the bodies contours, similar to the function of memory foam, and adjust a garments size according to the size of the wearer.

Hydrogels & membranes

Hydrogels  and membranes  are able to release  drugs  or other chemicals  when required,  by swelling  in response to external stimuli such as pH changes, electric field, temperature, ionic strength or other chemicals (Lam Po Tang,  Stylios,  2005).  They  can  also  be  programmed  to release their substances at pre-programmed  intervals, which make them very interesting for footwear for health and sanitary reasons.


Luminescent  textiles  are  textiles  coated  (Möhring  et al., 2006), or printed (Gimpel et al., 2004), with luminescent paste,   or   textiles   with   luminescent   cords   woven   or knitted into their textile structure, which can, with an electronic (electroluminescent), photonic (photoluminescent),   chemical  (chemo-/bioluminescent), or thermal, stimuli (Addington and Schodek, 2005), be activated  to light. They can be integrated  into footwear, for aesthetical  and  functional  reasons,  but hiker  do not often  move  about  when  it is dark so the use of luminescent   colours  have  no  big  future  potential   for hiking footwear.


Photovoltaics (PVs) are arrays of cells containing a solar photovoltaic material that converts solar radiation into direct current electricity. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, microcrystalline silicon, cadmium telluride, and copper indium selenide/sulfide  (Jacobson, 2009) As they are flexible  they can be incorporated  into smart textiles which gives them a great future potential, but the foot is not the ideal place for such technologies therefore  I  will  not  discuss  this  further.  Also, temperatures above room temperature reduce the performance  of  photovoltaics  (Brian  and  Ray  2005),  so they  are  not  ideal  to  use  close  to  the  body  or  in  hot climates.

Electric Polymers

Electric Polymers have the ability to produce an electrical energy  or  a  current.   Piezoelectric   polymers   have  the ability  to  convert  mechanical   energy,  such  as deformation induced by force, into electrical energy and vice-versa,  pyroeletric  polymers produces an electric current out of thermal energy, thermoelectric polymers converts   thermal   differentials   into  currents   and  vice- versa (Addington and Schodek, 2005). This could be used to trigger reactions in other smart materials that react to currents, like shape memory materials for example.


With communication Langenhove and Hertleer, (2004) reefers to communication  taken part within one element of the suit,  between  the individual  elements  within  the suit, from the wearer to the suit, to pass instructions, and from the suit to the wearer or his environment, to pass information.

Optical fibres can be used as communication  within the suite (Park and Jayaraman, 2002) and so can Conductive yarns (Van Langenhove,  et al., 2002), as they can transfer electricity or light from one place, within the structure, to another.

When a textile switch is used for the wearer to act on functions   within   footwear,   it   is,   for   functional   and comfort  reasons,  essential  for  the  switch  to  be  located close  to  the  wearers  upper  body  rather  than  on  the footwear. Bluetooth® is one way of communicating  from the wearer to the suit and a new low energy technology has  been  announced  by  the  Bluetooth  Special  Interest Group (SIG) that could be interesting. (Bluetooth press release)

Advances in E-Footwear

Smart   Textiles   are   not   often   used   within   footwear, probably due to high cost. A few examples however are Dr.Scholl®s Shape Memory foam insoles, Memory fit™ work and PCM materials that have been used, quite extensively in winter footwear and hiking boots, in the form   of   Sympatex®   or   Outlast®,   to   create   thermal balance and increase thermal insulation properties. However studies has shown that a layer of PCM does not minimize the risk of cold injury (Mekjavik et al., ???).

Wearable electronics within footwear has not been researched  as extensive  as in E-garments.  Some  studies on wearable sensors for gait monitoring (Morris and Paradiso,  2002;  Edmison  et al., ???)  has been  made  and some research on computer interfaces for interactive E-Garments is a frequently used term; so far I have never come across ‘E- Footwear’, which I think is a valid term to describe footwear incorporated with wearable electronics.

Dance and the capture of high-level podiatric gesture has been done (Paradiso  et al., 2000; Paradiso and HU, 1997; Hu, 1999).

These  sensor   systems   incorporate   numerous   different kinds of sensors. ‘The Expressive footwear’ is a electronic musical wearable that measures continuous pressure at 3 points near the toe, dynamic pressure at the heel, bidirectional bend of the sole, height of each foot off conducting strips in the stage, angular rate of each foot about the vertical, angular position of each foot about the earth’s local magnetic field, as well as their tilt and low-G acceleration, 3 axis shock acceleration (from kicks and jumps, and position  (via an integrated  sonar)’ (Paradiso et al., 2000).

Wearable electronics within footwear on the commercial market is fairly limited. However a trend to integrate different wearable electronics both for functional and performance purposes can be seen. In 2005 Adidas® launched the Adidas_1™ Smart Ride shoe. This shoe has a microprocessor  and sensors that adjusts the cushioning of the shoe as you run. Nike® has in collaboration with Apple® launched ‘Nike+ipod’, a wearable sensor which connects to your iPod/iTouch or phone and tracks your exercise  as you go. The sensor  can be integrated  in the sole  of  specific  Nike  shoes,  or  attached  to  any  pair  of shoes in a specially designed pouch.


ABC of Hiking,  Hiking Boots – Features  & Characteristics [Online] Available at: [Accessed 10 April 2010]

ABC  of  Hiking.  Hiking  Boot  Types  –  Different  Types  of Hiking Boots [Online]  Available  at: [Accessed 10 April 2010]

Addington, M., Schodek, D., 2005. Smart Materials and Technologies for the architecture and design professions. Architectural  Press

American  Orthopaedic  Foot & Ankle Society, The Adult foot    [Online]     (Updated     Jan    2008)    Available     at: [Accessed 28 April 2010].

Braddock Clarke, S.E., O’Mahony, M,. (1996), Techno Textiles: Revolutionary  Fabrics for Fashion and Design, Thames & Hudson

Brownell,  B,.  2006.  Transmaterial:  A  catalog  of  materials that redefine our physical environment. Princeton Architetcural  Press NewYork

Bordeux.  Pointe Shoe Quick Fit Chart [Online]  (Updated 29 July 2004) Available at: rt.html [Accessed 01 July 2010]

Cavanagh,  P.R.,  Hewitt,  F.G.,  Jr.,  Perry,  J.E.  In- shoeplantar  pressure measurement:  a review. The foot. 2(4), 1992, pp. 185-194

Chan Vili, Y., 2007. Investigating  Smart Textiles  Based on Shape Memory  Materials.  Textile  Research  Journal,  2007, 77, 290

Chapman,  L., 2002. High tech fabrics  for smart garments, Concept 2 Consumer, September 2002, pp. 15-19

Cochrane, C., Koncar, V., Lewandowski,  M., Dufour, C., 2007.  Design  and Development  of a Flexible  Strain  Sensor for Textile  structures  Based  on a conductive  polymer composite. Sensors 2007, 7, pp 473-492

Compression  garments  for  enhanced  performance, Performance  Apparel  Markets.  (23)(pp  16-31),  2007.  Date of Publication: 4th Quarter 2007.

Concar, V., Deflin, E., Weill, A., 2000. Communication apparel  and  optical  fibre  fabric  display,  Wearable electronics and photonics, pp. 155-176, Woodhead Publiching in Textiles

Coyle, S., Wu, Y., Lau, K-T., Brady, S., Wallace, G., Diamond, D., Bio-sensing textiles – Wearable Chemical Biosensors for Health Monitoring

Deflin, E., Weill, A., Koncar, V., 2002. Communicating clothes:  optical  fiber fabric for a new flexible  display, AVANTEX Proceedings, 13-15 May 2002

De  Jonckneere,   J.,  Jeanne,  M.,  Griller,  A.,  Weber,  S., Chaud,  P.,  Logier,  R.,  Weber,  J., Optical  fibre  embedded into  technical   textile   for  healthcare,   an  efficient   way  to monitor patient under magnetic resonance imaging, 29th Annual     International     Conference     of    IEEE-EMBS, Engineering  in  Medicine  and  Biology  Society  – Proceedings, EMBC’07

De Roddi, D.,. Della Santa, A., Mazzoldi, A., 1999. Dressware: wearable hardware. Materials Science and Engineering: C, Vol. 7 pp.31-35

Doan  B.K.,  Kwon  Y.H.,  Newton  R.U.,  Shim  J., Popper E.M., Rogers R.A., Bolt L.R., Robertson M. and Kraemer W.J. Evaluation of a lower-body compression garment. In Journal of Sports Science, 21(8): 601-610, 2003

Drean, E., Schacher, L., Adolphe, D., A smart sensor for compression  measurement  in  automotive  textiles. International  Journal  of Clothing  Science  and Technology. Vol. 19, No. ¾, 2007, pp 242-252

Duffy,   G.,   2008.   Health:   Put   your   feet   first   [Online] (Updated 6 Oct 2008) Available at:[Accessed 01 July 2010]

Edmison,  J., Jones,  M.,  Lockhart,  T., Martin,  T., An  E- Textile  system  for  motion  analysis,  Electrical  and Computer Engineering and Industrial Systems Engineering, Virginia Tech, USA

Farid.,  M.M., et al, 2004. A review on phase change energy storage: materials and applications. Energy Conservation and management,  Vol 45, pp1597-615,  2010.  What  foot  type  are  you? [Online] Available at: es/foottypes.htm [Accessed 01 July 2010]

Gibbs, P., Asada, H.H., 2004. Wearable conductive fiber sensors   for   measuring   joint   movements,   Robotics   and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference

Gimpel, S., .Mohring, U., Muller, H., Neudeck, A., 2004. Textile-Based Electronic Substrate Technology, Journal of Industrial Textiles January 2004 vol. 33 no. 3 pp.179-189

Glaros, C., Fotiadis, D. I., Wearable Devices in Healthcare, Unit of Medical Technology  and Intelligent Information Systems, Dept. of Computer Science, University of Ioannina, GR 45110, Ioannina, Greece

Green, W.M., O’Conner, H.M., Types of ankle sprains [Online] (Updated 11 Jan 2008) Available at:,,zm2754,00.html [Accessed 01 July 2010]

Gopalsamy,  C., Park, S., Rajamanickam,  R., Jayaraman, S., The Wearable MotherboardTM: The First Generation Adaptive and Responsive Textile Structures (ARTS) Medical Applications, Georgia Institute of Technology, Atonto, Georgia, Virtual Reality (1999) 4:152-168, USA

Gray, C., Malins, J., (2004), Visualizing  Research:  A guide to the research process in art and design, Ashgate, England

Hartmann,  M.H.,  2004.  Stable  Phase  change  materials  for use in temperature Regulating Fibers, fabrics and textiles, Outlast Technologies  Inc., Boulder, CO.

Hearle,  J.W.S.,  2000. High-performance  fibers. Woodhead Publishing Limited, Cambridge, England

Heichal, Y., Chandra, S., Bordatchev, E., 2004. A fast- response thin film thermocouple to measure rapid surface temperature changes, Experimental Thermal and Fluid Science 30 (2005)  pp153-159.

Heertleer, C et al. 2004. Towards a smart suit, Wearable Electronic and Smart Textiles, Research Institute for Flexible Materials, Leeds

Hibbert, R., 2004. Textile Innovation: Interactive, contemporary and traditional materials, 2nd Edition, Line

Howard,  A.,  2001.  A  new  kind  of  dialogue,  Adbuster, Issue 37-Design Anarchy

Inzelt, G., (2008) Conducting Polymers, Springer, 2008, Berlin, Heidelberg

Jones,  V.,  van  Halteren,  A.,  Widya,  I.,  Dokovsky,  N., Koprinkov, G., Bults, R., Konstantas, D., Herzog, R., MOBIHEALTH:   MOBILE  HEALTH  SERVICES  BASED ON BODY AREA NETWORKS

Kane, D., 2006. Sports people experience the benefits of wool, Wool   Record.   165(3744)(pp   39),  2006.   October   2006. World Textile Publications Ltd

Kerri,  W.,  2009.  Wear  it  Well:  Wearable  Display Technologies. MADE (Materials and Design Exchange magazine),                    Issue                   3.09,                   2009

Kim,  B.  K.,  Kim,  B.  Y.  and  Cho,  J.  H.,  Self-Directed Learning  using Fuzzy Grade Sheets. International  Journal of KIMICS, Vol. 2. No. 2. (2005) 97-101

Heichal, Y., Chandra, S., Bordatchev, E., 2004. A fast- response thin film thermocouple to measure rapid surface temperature changes. Experimental Thermal and Fluid Science, 30, 2005, pp. 153-159

Hu, J.,. Meng, H., Zhu, Y., Liu, J., Ji, F-L., Liu, B., Yeung, L., Shen, L., Hu, Y., Han, J., Li, W., Kennedy, J. K., Onkaraiah,  P., Liu, Y., Zeng, W., Luo, H., Chen, S., Li, Y., Zhuo,  H., Zheng,  Y., Zhang,  C., 2009.  Carbohydrate Polymers. Elsivier, 2010

Jacobson, M.Z., 2009. A path to sustainable energy by 2030, Scientific American Nov. 2009

Kraemer W.J., Bush J.A., Wickham R.B., Denegar C.R., Gómez A.L., Gotshalk L.A., Duncan N.D.,Volek J.S., Putukian  M.  and  Sebastianelli  W.J.  Influence  of compression   therapy   on   symptoms   following   soft   tissue injury from maximal eccentric exercise. In Journal of Orthopaedic  and  Sports  Physical  Therapy,  31(6):  282-290, 2001

Kraushaar,   D.,   200?.   Finding   Your   Running   Shoe   – Matching  foot  type  to  shoe  type  [Online]  Available   at: [Accessed   01  July  2010]Kyoobin,   L., Dong-Soo,   K., Wearable   master   device   for  spinal   injured   persons   as  a control device for motorized wheelchairs, Artif Life Robotics (2000) 4:182-187, Springer-Verlag  London Ltd

Lam Po Tang, S., Stylios, G., 2005. An overview of smart technologies  for  clothing  design  and  engineering. International  Journal  of Clothing  Science  and Technology, Vol. 18 No. 2, 2006, pp 108-128

Van Langenhove,  L., Hertleer,  C., (2004) Smart clothing: a new life, International  Journal of Clothing Science and Technology, Vol. 16 Iss: 1/2, pp.63 – 72

Laue,  D.,  2009.  “Little  Black  Dress-Avantex   Innovation

Prize, 2009”, Textile Forum , Issue 3, September,  pp. 40-41

Lee, B., 2002. Review of the present status of optical fiber sensors. Optical Fibre Technology, 9, 2003, pp 57-79

Manning,    S.,   The   footman,   [Online] Available    at: man/Footman_14_Foot_types.pdf   [Accessed    03   July 2010]

Matsui-international, Hydrochromic wet revile binder [Online] Available at:http://www.matsui- [Accessed 25 June 2010]

McKinley Health Center, the University of Illinois, 2009. Foot  Types  and  Proper  Footwear  [Online]  Available  at: es/foot_types.htm  [Accessed 01 July 2010].

Maklewska,        E.,         Nawrocki,        A.,         Kowalski, K., Andrzejewska,   E.,    Kuzanski,   W.,   New   measuring device  for  estimating  the  pressure  under  compression garments, International Journal of Clothing Science and Technology,  Volume  19, Numbers  3-4,  2007  , pp. 215- 221(7), Emerald Group Publishing Limited

Maton B., Thiney G., Dang S., Tra S., Bassez S.,Wicart P. and  Ouchene  A. Human  muscle  fatigue  and  elastic compressive stockings. In European Journal of Applied Physiology 97(4): 432- 442, 2006

Mattila, H.R., 2006. Intelligent textiles and clothing. Woodhead Publishing in Textiles

McPoil, T. G.. 2000. Athletic footwear: design, performance and selection  issues.  Journal  of Science  and Medicine  in Sport 3 {3): 260-267

McQuaid,  M., 2005. Extreme  Textiles:  Designing  for High Performance. Thames & Hudson

Mekjavik, I.B., Tom, M., Frank , M., Michael, J.,  ????.


Mohr. G.J,. Wolfbeis O.S., 1994, Optical sensors for a wide pH range based on azo dyes immobilized  on a novel support, Analytica Chimica Acta Volume 292, Issues 1-2, 30 June 1994, Pages 41-48

Morris, S., J., Paradiso, J., A., 2002. Shoe-Integrated  Sensor System For Wireless Gait Analysis and Real-Time Feedback. Proceedings   of  the  second   Joint  EMBS/BMES Conference, Huston, TX, USA, October 23-26 2002

Morris,  S., J., Paradiso,  J., A., 2003.  A compact  wearable sensor  package  for clinical  gait monitoring.  Offspring  Vol. 1, No. 1, pp 7-15, January 2003

Möhring, U., Gimpel, S., Neudeck, A., Scheibner, W., Zschenderlein, D., 2006. Conductive, sensorial and luminescent   features   in  textile   structures.   (TITV   –  The Institute   for  Special   Textiles   and  Flexible   Materials, Greiz, Germany)

National   Institutes   of  Health,  2010.  Foot  injuries  and disorders  [Online]  (Updated  03 July  2010)  Available  at: ddisorders.html  [Accessed 03 July 2010]

Noble,  I., Bestley,  R., (2005),  Visual Research  – an introduction   to  research  methodologies   in  graphic  design, AVA Publishings SA, Switzerland

O’Mahony, M., Braddock, S.E., 2002. SportsTech: Revolutionary  Fabrics,  Fashion  & Design.  Thames  & Hudson

Off road outdoors. Hiking boots shopping guide [Online] Available  at:    [Accessed     17    May 2010]

Page,  M., Team  Aware-  a wearable  display  for team  sport, (November  20th, 2006), [Online], Available at: [Accessed 24 January 2010]

Paradiso, J., Hsiao, K-Y., Benbasat, A., Teegarden, Z., Design and Implementation of Expressive Footwear. Responsive   Environment   Group,   MIT   Media Laboratory

Paradiso, J., Hu, E., Expressive Footwear for Computer- Augmented Dance Performance, Proc. Of the first International Symposium on Wearable Computers, Cambridge, MA., IEEE Computer Society Press, Oct. 13-14, 1997, pp. 165-166

Park,   S.,   Mackenzie,    K.,   Jayaraman,    S.,   2002.   The wearable motherboard: A framework for personalized mobile information processing (PMIP). Georgia Institute of Technology, Atlanta, Georgia, USA

Pluchik,    R.,   1980,    Emotion:    A   Psycho    Evolutionary Synthesis Pressure    therapy:    Compression    garments,    Medical Textiles. (APR.)(pp 8-9), 2007. April 2007.

Pu, X., Xiaoming, T., Mei-Yi, L., Hui, Z., 2000. Eletcromechanical  properties of conductive fibres, yarns and fabrics, Wearable electronics and photonics, pp. 81-104, Woodhead Publiching in Textiles

Running  Shoes  May  Cause  Damage  to  Knees,  Hips  and Ankles: Greater Stresses on Joints than Running Barefoot or Walking in High-Heeled Shoes, Life Sciences; Observed, Obesity, Fitness & Wellness Week, 23 January 2010

Rothmaier, M., Luong, M., P., Clemens, F., 2008. Textile Pressure Sensor Made of Flexable Plastic Optical Fibers. Sensors 2008, 8, pp 4318-4329

Rogale,  S.,  F.,  Rogale,  D.,  Dragcevic,   Z.,  Nikolic,  G., 2007. Technical systems in intelligent clothing with active thermal  protection.  International  Journal  of Clothing Science  and  Technology,  Vol.  19 No.  ¾, 2007,  pp 222-233

Russell,   D.  A.,   Hayashi,   S.,  Yamada,   T.,   1999.   The potential  uses  of  Shape  Memory  Film  in  Clothing. Techtextile 1999, Frankfurt 12-16 May 1999

Seymore,  S.,  2008.  Fashionable  Technology:  The Intersections of Design, Fashion, Science and Technology. Springer Wien NewYork

Shakeri, C., Noori, M.N., 2004 Smart mater and structure- a rewiev.

Shorten,  M. R., FOOTWEAR  BIOMECHANICS : WHAT DOES THE FUTURE HOLD, Proceedings of the VII Footwear BioMichanics  symposium.

Smith, B,. 2006. Pitch Invasion-Three  stripes, Two brothers, One feud: Adidas, Puma and the making of modern sport. Penguin Books

Sterk,  B.,  2009.  The  Smart  Textiles  Community,   Textile Forum , Issue 3, September, pp. 36-37

Sudhakar,  P., Gobi, N., Chameleonic  textiles- not only the colour change, [Online], Available at: article/technology-industry-article/chameleonic- textiles/chameleonic-textiles2.asp [Accessed  24 January 2010]

Tao, X., (2000), “Wearable electronics and photonics”, Woodhead publishing in Textiles

Tao, X., 2001, Sensors  in garments.  Textile Asia, January 2002, pp38-41

Textile Fabric Consultants, Inc., Fabric Properties and Distinctions: All about wool,[Online], Available at:     [Accessed     06 February 2010]

Thomsom,   R.,  1986.  Making  Shoes.  London.   Franklin Watts.

TFRG Associates,  Research Associate, [Online], Available at:  [Accessed  24 January 2010]

Varadan, V.K., 2000. Smart Electronics and MEMS. SPIE- The International Society for Optical Engineering

Van Humbeeck,  J., Non-medical  applications  of shape memory  alloys.  Material  Science  and Engineering,  1999, pp 134-148

Von Laagenhove,  L., Hertleer, C., 2004. Smart clothing: a new life. International Journal of Clothing Science and Technology, Vol. 16, No. ½, 2004, pp 63-72

Whitesides,  B.,  Selecting  a  running  shoe,  [Online] Available  at: [Accessed 01 July 2010]

Ying,   B-A.,   et  al.,  2004.   Assessing   the  performance   of textiles  incorporating  phase change  materials,  Polymer Testing, Vol 23, pp. 541-9

Zhang,  X., Tao, X., 2001a,  Smart  Textiles:  Passive  Smart. Textiles Asia, June 2001, pp. 45-49

Zhang,  X., Tao,  X., 2001b,  Smart  Textiles:  Active  Smart. Textiles Asia, June 2001, pp. 49-52

Zhang,  X.,  Tao,  X.,  2001c,  Smart  Textiles:  Very  Smart. Textiles Asia, June 2001, pp. 35-37.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s